Hamiltonian simple polytopes
نویسندگان
چکیده
منابع مشابه
Hamiltonian Submanifolds of Regular Polytopes
This work is set in the field of combinatorial topology, a mathematical field of research in the intersection of the fields of topology, geometry, polytope theory and combinatorics. This work investigates polyhedral manifolds as subcomplexes of the boundary complex of a regular polytope. Such a subcomplex is called k-Hamiltonian, if it contains the full k-skeleton of the polytope. Since the cas...
متن کاملLinear Programming, the Simplex Algorithm and Simple Polytopes
In the first part of the paper we survey some far reaching applications of the basis facts of linear programming to the combinatorial theory of simple polytopes. In the second part we discuss some recent developments concurring the simplex algorithm. We describe sub-exponential randomized pivot roles and upper bounds on the diameter of graphs of polytopes.
متن کاملSimple 0/1-Polytopes
For general polytopes, it has turned out that with respect to many questions it su ces to consider only the simple polytopes, i.e., d-dimensional polytopes where every vertex is contained in only d facets. In this paper, we show that the situation is very di erent within the class of 0/1-polytopes, since every simple 0/1-polytope is the (cartesian) product of some 0/1-simplices (which proves a ...
متن کاملSimple Extensions of Polytopes
We introduce the simple extension complexity of a polytope P as the smallest number of facets of any simple (i.e., non-degenerate in the sense of linear programming) polytope which can be projected onto P . We devise a combinatorial method to establish lower bounds on the simple extension complexity and show for several polytopes that they have large simple extension complexities. These example...
متن کاملOn pedigree polytopes and Hamiltonian cycles
In this paper we define a combinatorial object called a pedigree, and study the corresponding polytope, called the pedigree polytope. Pedigrees are in one-to-one correspondence with the Hamiltonian cycles on Kn. Interestingly, the pedigree polytope seems to differ from the standard tour polytope, Qn with respect to the complexity of testing whether two given vertices of the polytope are nonadja...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete & Computational Geometry
سال: 1995
ISSN: 0179-5376,1432-0444
DOI: 10.1007/bf02570708